\qquad

Due on Thursday June 25, 2015

Code of Academic Honesty

The work on this exam represents my own. I am allowed to use class notes and lectures. I am not allowed to get help from any other human being (classmates, other teachers, tutors, spouses, children, other family members,....).

Signature

\qquad Date: \qquad
GRADE: \qquad \%

1. Perform the multiplication and use the fundamental identities to simplify $(3-3 \cos x)(3+3 \cos x)$. (6 points)
2. Sketch two cycles of the graph of the following function. Label all your asymptotes and points clearly. (8 points)

$$
y=3 \sec \left(2 x-\frac{\pi}{3}\right)
$$

3. Use the trigonometric substitution to write the algebraic expression as a trigonometric function of θ, where $\frac{\pi}{2}<$ $\theta<\pi$. Simplify your answer. (10 points)
$\sqrt{64-16 x^{2}}, \quad x=2 \sin \theta$
4. Find the exact value of $\cos (\alpha+\beta)$ using the fact that $\sin \alpha=\frac{3}{5}, \quad 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{\sqrt{5}}{5}, \quad-\frac{\pi}{2}<\beta<0$. (8 points)
5. Find the values of all the missing parts of a triangle $A B C$. Use Law of Sines and Cosines as needed. (12 points)
a. $a=12 m, b=16 m, c=25 m$
b. $a=9.72 \mathrm{~km}, \quad b=11.8 \mathrm{~km}, A=38^{\circ} 40^{\prime}$
6. Verify the following identities. (20 points)
a) $\sin (3 \theta)=3 \sin \theta-4 \sin ^{3} \theta$
b) $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\frac{1+\sin \theta}{|\cos \theta|}$
c) $\cos \theta=\frac{1-\tan ^{2}(\theta / 2)}{1+\tan ^{2}(\theta / 2)}$
d) $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\tan \theta+\sec \theta$
7. Use the cofunction identities to evaluate the expression $\cos ^{2} 20^{\circ}+\cos ^{2} 52^{\circ}+\cos ^{2} 38^{\circ}+\cos ^{2} 70^{\circ}$ without the aid of a calculator. (6 points)
8. Find the exact value of the following expressions without using a calculator. (20 points)
a. $\cos 15^{\circ} \cos 60^{\circ}+\sin 15^{\circ} \sin 60^{\circ}$
b. $\frac{\tan (5 \pi / 4)-\tan (\pi / 12)}{1+\tan (5 \pi / 4) \tan (\pi / 12)}$
c. $\sin 15^{\circ}$
d. $\cos (\arcsin (\pi / 6))$
9. Find all complex cube roots of -125 . (Hint: use $z^{1 / n}=r^{1 / n}\left(\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right)$). (5 points)
10. Find the exact value of $(2+2 i)^{4}$. (Hint: $\left.(r \operatorname{cis} \theta)^{n}=r^{n} \operatorname{cis}(n \theta)\right)$ (5 points)
