\qquad

1. Sketch the graph of $f(x)=\frac{1}{20}(x-2)^{3}(x+1)^{3}(3 x+1)^{2}$ and then answer the questions below.
a. Number of local extrema \qquad x-intercepts \qquad y-intercepts \qquad
b. Leading Coefficient of $f(x)$ is \qquad and degree of $f(x)=$ \qquad
c. End Behavior of $f(x)$ is like $y=$ \qquad function.
d. Intervals where $\frac{1}{20}(x-2)^{3}(x+1)^{3}(3 x+1)^{2} \geq 0$ are \qquad

2. Given the graph of the function $y=f(x)$ determine a rough sketch of the function $y=\frac{1}{f(x)}$. Show all your asymptotes clearly (use colored pens). Explain clearly your logic.

3. Sketch the graph of the following the functions below and fill in the blanks.
A. $f(x)=\frac{3 x-1}{x-2}$,

Asymptotes are \qquad x-intercepts \qquad y-intercept \qquad -

B. $f(x)=\frac{(x-2)^{2}}{x-1}=x-3+\frac{1}{x-1}$

Asymptotes are \qquad
x-intercepts \qquad y-intercept \qquad

C. $g(x)=\frac{(x+1)^{2}(x-2)^{2}}{(x-1)^{2}}=x^{2}-4-\frac{4 x-8}{(x+1)^{2}}$

Asymptotes are :
x-intercpets \qquad y-intercept \qquad

Points of intersection with the asymptotes are \qquad

Intervals where $\frac{(x+1)^{2}(x-2)^{2}}{(x-1)^{2}}>0$ are \qquad

