\qquad
Please show all your work.

1. Evaluate the following given that $f(x)=\sqrt{2-x}$ and $g(x)=3 x+4$
a. $(f+g)(x)=$ \qquad
b. Domain of $(f+g)=$ \qquad
c. $(f-g)(2)=$ \qquad
d. $\left(\frac{f}{g}\right)(x)=$ \qquad
e. Domain of $\left(\frac{f}{g}\right)=$ \qquad
f. $(f \circ g)(x)=$ \qquad
g. Domain of $(f \circ g)(x)=$ \qquad
2. Sketch the graph of the functions below. Please show all your work and clearly show relevant points.
a. $y=f(x)$ is the graph below, use that to sketch the graph of $y-3=-2 f(x-4)$. Show all your steps clearly marked with colored pens.

b. $y=g(x)$ has the graph below, use that to find the graph of $y=g(-x)$.

3. Sketch the graph of the functions below. For graphs that have vertical asymptotes, please plot at least two points on either side of them. For a parabola show one point on either side of the vertex. Please show all your work and clearly show relevant points.
a. $f(x)=\log _{3}(x+1)-2$

Vertical Asymptote: \qquad Horizontal Asymptote: \qquad

c. $y=-(x-1)^{2}(x+1)^{3}(x-2)(x+2)$
x-intercepts with their multiplicities: \qquad
y-intercept: \qquad

Degree: \qquad

Leading Coefficient: \qquad

End Behavior: \qquad

x-intercepts: \qquad
y-intercept: \qquad

Vertex: \qquad

Focus: \qquad

4. Match each relation to its appropriate graph. If there is no match, please state so.

Match all the quantities in Column B that are equivalent to quantities in Column A. Some of the column B quantities may not have any corresponding items in column A, but all items in column A have at least one or more corresponding items in column B.

Column A	Answer	Column B
$y=-(x-1)^{2}(x+1)^{3}(x-2)^{2}$		
$\frac{(x+1)^{2}}{4}+(y-2)^{2}=1$		
$y=(x-1)^{2}(x+1)^{3}(x-2)$		
$-\frac{(x+1)^{2}}{4}+(y-2)^{2}=1$		

5. Identify the conic sections. Sketch the graph of the conic section and show all the relevant parts in the graph clearly. If you identify the conic section as

- a circle, please find the center and radius.
- as a parabola, please find the vertex, focus, and directrix.
- as an ellipse, please find the center, a and b, vertices, and foci.
- as a hyperbola, please find the center, vertices, foci, and also graph the asymptotes.
a. $4 x^{2}=-8 x+10 y-y^{2}+71$

b. $-\frac{5}{2} y^{2}+10 y+\frac{1}{2}=x$

c. $4 x^{2}+16 x+9 y^{2}+18 y=119$

d. $\quad-\frac{(x-5)^{2}}{16}+{\frac{(y-1)^{2}}{25}}^{2}=-1$

6. Sketch the graphs of the following rational functions
a. $y=x-2+\frac{3}{(x-1)^{2}}$
b. $y=\frac{2 x-3}{x+1}$

7. Find all solutions to the inequality $x-2+\frac{3}{(x-1)^{2}} \geq 0$. How do the solutions to this inequality show up in problem 7a?
8. Sketch the graph of $f(x)=(x+1)^{3}(x-1)^{3}(x-2)^{2}$ and then answer the questions below. (6 pts)
a. Maximum number of local extrema \qquad
b. Actual number of local extrema: \qquad
c. x-intercepts \qquad
d. y-intercept \qquad
e. Leading Coefficient of $f(x)$ is \qquad and degree of $f(x)$ is \qquad
f. End Behavior of $f(x)$ is \qquad
g. Intervals where $(x+1)^{3}(x-1)^{3}(x-2)^{2} \leq 0$ are \qquad

9. Given the graph of the function $y=f(x)$ determine a rough sketch of the function $y=\frac{1}{f(x)}$. Show all your asymptotes clearly (use colored pens). Explain clearly your logic. (2 pts)

