Mat 110 Review

Please show all your work.

- 1. Evaluate the following given that $f(x) = \sqrt{2-x}$ and g(x) = 3x + 4
- a. (f + g)(x) =_____
- b. Domain of (f + g) =_____
- c. (f g)(2) =_____
- d. $\left(\frac{f}{g}\right)(x) =$
- e. Domain of $\left(\frac{f}{g}\right) =$ _____
- f. $(f \circ g)(x) =$ _____
- g. Domain of $(f \circ g)(x) =$ _____
- 2. Sketch the graph of the functions below. Please show all your work and clearly show relevant points.
- a. y = f(x) is the graph below, use that to sketch the graph of y 3 = -2f(x 4). Show all your steps clearly marked with colored pens.

b. y = g(x) has the graph below, use that to find the graph of y = g(-x).

- 3. Sketch the graph of the functions below. For graphs that have vertical asymptotes, please plot at least two points on either side of them. For a parabola show one point on either side of the vertex. Please show all your work and clearly show relevant points.
- a. $f(x) = log_3(x+1) 2$

b. $y = 2^{x+4} - 1$

Vertical Asymptote: _____

Horizontal Asymptote: _____

c.
$$y = -(x-1)^2(x+1)^3(x-2)(x+2)$$

x-intercepts with their multiplicities: _____

y-intercept: _____

Degree: _____

Leading Coefficient: _____

x-intercepts: _____

y-intercept: _____

Vertex: _____

d. $y = 3x^2 - 12x + 13$

4. Match each relation to its appropriate graph. If there is no match, please state so. Match all the quantities in Column B that are equivalent to quantities in Column A. Some of the column B quantities may not have any corresponding items in column A, but all items in column A have at least one or more corresponding items in column B.

Column A	Answer	Column B
$y = -(x - 1)^{2}(x + 1)^{3}(x - 2)^{2}$		
$\frac{(x+1)^2}{4} + (y-2)^2 = 1$		y 5 4 4 -7 -8 -8 -2 -1 - 1 - 2 - 3 - 4 - 5 x
$y = (x - 1)^{2}(x + 1)^{3}(x - 2)$		
$-\frac{(x+1)^2}{4} + (y-2)^2 = 1$		y 5 4 2 2 4 -4 -3 -2 -1 -1 2 3 X

- 5. Identify the conic sections. Sketch the graph of the conic section and show all the relevant parts in the graph clearly. If you identify the conic section as
 - a circle, please find the center and radius.
 - as a parabola, please find the vertex, focus, and directrix.
 - as an ellipse, please find the center, *a* and *b*, vertices, and foci.
 - as a hyperbola, please find the center, vertices, foci, and also graph the asymptotes.
- a. $4x^2 = -8x + 10y y^2 + 71$

b.
$$-\frac{5}{2}y^2 + 10y + \frac{1}{2} = x$$

c. $4x^2 + 16x + 9y^2 + 18y = 119$

d.
$$-\frac{(x-5)^2}{16} + \frac{(y-1)^2}{25} = -1$$

6. Sketch the graphs of the following rational functions

a.
$$y = x - 2 + \frac{3}{(x-1)^2}$$

b.
$$y = \frac{2x-3}{x+1}$$

- 7. Find all solutions to the inequality $x 2 + \frac{3}{(x-1)^2} \ge 0$. How do the solutions to this inequality show up in problem 7a?
- 8. Sketch the graph of $f(x) = (x + 1)^3(x 1)^3(x 2)^2$ and then answer the questions below. (6 pts)
 - a. Maximum number of local extrema

b. Actual number of local extrema: _____

- c. *x*-intercepts _____
- d. y-intercept _____
- e. Leading Coefficient of f(x) is _____ and degree of f(x) is _____
- f. End Behavior of f(x) is _____
- g. Intervals where $(x + 1)^3 (x 1)^3 (x 2)^2 \le 0$ are _____

9. Given the graph of the function y = f(x) determine a rough sketch of the function $y = \frac{1}{f(x)}$. Show all your asymptotes clearly (use colored pens). Explain clearly your logic. (2 pts)

