Chapter 2: Graphing Functions and Relations

2.1 Library of Functions

Lecture

Graphing Part 1 (14 min) https://www.youtube.com/watch?v=oxILQDhM3yM
Graphing Part $2(15 \mathrm{~min})$ https://www.youtube.com/watch?v=zdO_bttea_E
国 Graphing Part 3 (15 min) https://www.youtube.com/watch?v=4xwIHBko9RA
We will focus on the graphs of relations and functions in this chapter. We already have some basic understanding of specific functions from last chapter. You graphed versions of the basic polynomial, rational, square root, absolute value, exponential and logarithmic functions. One way to graph functions and relations is to plot enough points to give you a good sense of the main features of the graph. On the other hand as a mathematician we can gain deeper understanding of functions and relations by exploring their generic forms and then exploring how certain modifications of these parameters affect the basic form leading us to predictable changes in the graphs.
Before we begin let us create a library of graphs of some of the functions you may have encountered before now and see how these graphs can lead to understanding of more complex graphs.
Library of graphs functions

5. $f(x)=\sqrt{x}$

x	$y=x$
0	-2
1	-1
4	0
9	1

This function is neither odd nor even. With $(0,0)$ being the x-intercept and y-intercept.

6. $f(x)=\frac{1}{x}$			
x	$y=\frac{1}{x}$	x	$y=\frac{1}{x}$
-0.1	$\frac{1}{-0.1}=-10$	-10	$\frac{1}{-10}=-0.1$
-0.01	$\frac{1}{-0.01}$ $=-100$	-100	$\frac{1}{-100}$ $=-0.01$
-0.001	$\frac{1}{-0.001}$ $=-1000$	-1000	$\frac{1}{-1000}$ $=-0 . .001$
0.1	$\frac{1}{0.1}=10$	10	$\frac{1}{10}=0.1$ 0.01 $\frac{1}{0.01}=100$ 0.001 $\frac{1}{0.001}=1000$ 1000
$\frac{1}{100}=0.01$	$\frac{1}{1000}$ $=0 . .001$		

This is an odd function or symmetric with respect to the origin. There are no x or y intercepts. The lines $y=0$ and $x=0$ are horizontal and vertical asymptotes respectively.

The line $x=0$ is a vertical asymptote.

Playing

Once we have the basic graphs of a few functions we can use these to figure out how the graphs of these original functions change, when we change a few parameters. So if we know the graph of the function $y=f(x)$, can we find graph the function $y=a f(x-h)+k$. In other words play with functions below to figure out what the number a, b, and c actually do the graph of $y=f(x)$. Please fill in the blanks for the graphs below. Then write your observations. Do not peek ahead to see what happens. The work below will give you a good insight into the graphing of functions.

Please sketch the graphs of the functions below by filling the chart and then plotting the appropriate coordinates.

1. $f(x)=|x|$

x	$y=\|x\|$
-2	2
-1	1
0	0
1	1
2	2

4. $f(x)=|x-2|$

x	$y=\|x-2\|$
0	
1	
2	
3	
4	

2. $f(x)=|x|+2$

x	$y=\|x\|+2$
-2	
-1	
0	
1	
2	

5. $f(x)=|x+2|$

x	$y=\|x+2\|$
-4	
-3	
-2	
-1	
0	

3. $f(x)=|x|-2$

x	$y=\|x\|-2$
-2	
-1	
0	
1	
2	

6. $f(x)=|x-2|+2$

x	$y=\|x-2\|+2$
-4	
-3	
-2	
-1	
0	

Observations

Graph of $f(x)=|x-h|+k$ is the same as the graph of $y=|x|$ but is shifted ___ units up/down, and shifted \qquad units left/right.

Observations

Graph of $f(x)=(x-h)^{2}+k$ is the same as the graph of $y=x^{2}$ but is shifted \qquad units up/down, and shifted \qquad units left/right.

Observations: Graph of $f(x)=a^{x-h}+k$ is the same as the graph of $y=a^{x}$ but is shifted units up/down, and shifted \qquad units left/right. The horizontal asymptote of the graph of $f(x)=a^{x-h}+k$ is given by $y=$

Vertical Asymptote at $x=$ \qquad
22. $f(x)=-\log _{3} x$

x	$y=-\log _{3} x$
$\frac{1}{9}$	
$\frac{1}{3}$	
1	
3	
9	

Vertical Asymptote at
$x=$ \qquad
20. $f(x)=\log _{3} x+2$

x	$y=\log _{3} x+2$
$\frac{1}{9}$	
$\frac{1}{3}$	
1	
3	
9	

Vertical Asymptote at
$x=$ \qquad
23. $f(x)=\log _{3}(x-2)$

x	$y=\log _{3}(x-2)$
$\frac{1}{9}+2$	
$\frac{1}{3}+2$	
$1+2$ $=3$	
$3+2$ $=5$	
$9+2$ $=11$	

Vertical Asymptote at
$x=$ \qquad
21. $f(x)=\log _{3} x-2$

x	$y=\log _{3} x-2$
$\frac{1}{9}$	
$\frac{1}{3}$	
1	
3	
9	

Vertical Asymptote at
$x=\overline{\text { 4. }} f(x)=\log _{3}(x+2)$
24. $f(x)=\log _{3}(x+2)$

x	$y=\log _{3}(x+2)$
$\frac{1}{9}-2$	
$\frac{1}{3}-2$	
$1-2$ $=-1$	
$3-2$ $=1$	
$9-2$ $=7$	

Vertical Asymptote at
$x=$ \qquad

Observations

Graph of $f(x)=\log _{a}(x-h)+k$ is the same as the graph of $y=\log _{a} x$ but is shifted \qquad units up/down, and shifted \qquad units left/right. The vertical asymptote of the graph of $f(x)=\log _{a}(x-h)+k$ is given by $y=$ \qquad

In general our observations are that the graph of $y=f(x-h)+k$ is the same as the graph of $y=f(x)$ but is shifted \qquad units up/down, and shifted \qquad units left/right. If the gaph of $y=f(x)$ has vertical or horizontal asymptotes, then in the new graph of $y=f(x-h)+k$ the vertical asymptote of the graph is at $x=$ \qquad and the horizontal asymptote of the graph is at $y=$ \qquad _.

Use your own functions $y=f(x)$ and make observations of what is the graph $y=a f(x)$ and also the graph of $y=f(a x)$. Use the space below.

Cover Sheet for Sec 2.1

Name: \qquad

Please write your observations by filling the blanks below.

1. The graph of the function $y=f(x)+k$ is shifted \qquad from the graph of the original function $y=f(x)$.
2. The graph of the function $y=f(x)-k$ is shifted \qquad from the graph of the original function $y=f(x)$.

Statements 1 and 2 can also be written as statements 3 and 4 below.
3. The graph of the function $y-k=f(x)$ is shifted \qquad from the graph of the original function $y=f(x)$.
4. The graph of the function $y+k=f(x)$ is shifted \qquad from the graph of the original function $y=f(x)$.
5. The graph of the function $y=f(x-h)$ is shifted \qquad from the graph of the original function $y=f(x)$.
6. The graph of the function $y=f(x+h)$ is shifted \qquad from the graph of the original function $y=f(x)$.
7. The graph of the function $y=a f(x)$ is \qquad from the graph of the original function $y=f(x)$.
8. The graph of the function $y=c f(x)$ is \qquad from the graph of the original function $y=f(x)$.
9. The graph of the function $y=-f(x)$ is \qquad from the graph of the original function.
10. The graph of the function $y=f(-x)$ is \qquad from the graph of the original function.
11. For quadratic functions, completing the squares allows you to find the vertex of the parabola. So if we had the function $y-k=a(x-h)^{2}$, the point (h, k) is referred to as the \qquad of the parabola.
12. For quadratic functions, completing the squares allows you to find the vertex of the parabola. So if we had the function $y+k=a(x+h)^{2}$, the point $(-h,-k)$ is referred to as the
\qquad of the parabola.
13. An even function is symmetric with respect to the \qquad .
14. An odd function is symmetric with respect to the \qquad .

Video Log 2.1

Using the facts from the previous sheet, sketch the graph of the functions below.

