Final Exam Review (also counts as Quiz 7) Name:_____

Due May 10, 2016

Please show all your work.

1. Answer the following questions.

For the function below

2. The functions *f* us defined as follows: $f(x) = \begin{cases} 3\sqrt{x} & \text{if } x > 4\\ 2x - 1 & \text{if } x < -4 \end{cases}$ Find the following. A) f(4) b) f(-1)

- 3. Describe in your own words the difference between
 - a. Polynomial and exponential function.
 - b. Exponential and logarithmic function
 - c. Write an expression for a function that best describes each of the data sets below.

		x	у	x	у	
x	у	-2	4	1	-2	
-2	1	-1	1	4		
	4	0	1	1	-1	
-1	1			2		
	2	1	2	1	0	
0	1					
		2	4	2	1	
1	2					
				4	2	
2	4	f(x) =				
		, (*	,			
					f(x) =	
f(x) =						

- 4. Determine the inverse of each of the functions below. Find the domain rage of the function and its inverse.
- 5. A species of an e-coli bacteria doubles every 30 minutes at room temperature. Write a function to represent the amount of these bacteria A(t) at room temperature after t hours, if you initially started with 30000 bacteria.
- a. Find the number of bacteria after 2 hours.
- b. Find the number of bacteria at 4 hours.
- c. How long will take for the bacteria to double in size?
- d. When the bacteria reach a critical mass a person will get sick. Usually a critical mass is reached when the bacteria number 10 billion or more. So how many hours will take for a person to get sick. Round your answer to the nearest whole number as necessary.
- 6. Amy invested 2000 dollars into a savings account that paid compound interest of 4.3% compounded quarterly.
 - a. How long will take for her money to grow to 3000\$?
 - b. How long will take for her money to double?

10. Two functions g and f are defined in the figure below. Find the domain and range of the compositions $f \circ g(x) = f(g(x))$, and $g \circ f(x) = g(f(x))$. Then evaluate the function values below. $g(x) = \frac{x+6}{x-r}$, and $f(x) = 2x - 7$					
Domain of f			Range of <i>f</i>		
Domain of <i>g</i>		Range of <i>g</i>			
Domain of $f \circ g(x) = f(g)$	(x))		Range of $f \circ g($	f(x) = f(g(x))	
Domain of $g \circ f(x) = g(f)$	(x))		Range of $g \circ f$ (f(x) = g(f(x))	
a. $f \circ g(x)$	b. <i>g</i> ₀ <i>f</i> (6)	C. fog	g(6)	d. <i>g</i> ₀ <i>f</i> (0)	
11. Find the inverses of the functions and	of the following one-to-o their inverses.	ne funct	ions. Then find	the domains and ranges of	
a) $f(x) = \frac{7x+1}{2x-1}$		b)	$g(x) = 2^x$		
Domain of <i>f</i>	Range of f^{-1}	Do	main of <i>g</i>	Range of g^{-1}	
Domain of f^{-1}	Range of <i>f</i>	Do	main of g^{-1}	Range of g	

Exponential	Logarithmic	
Equation	Equation	
$e^{x} = 5$		
$2^{x+1} = 8$		
	$log_2(x) = -1$	
	$\log(x+1) = 2$	
	$\ln(x+1) = 3$	
$5^{1-x} = 3$		
	$\log_{\frac{1}{2}}(x) = -3$	
13. Expand the fol that all variabl	lowing. Each logarithm in your es are positive.	answer should involve only one variable. Assum
a) $\log(x^3y^2) = $		
b) $\log_2\left(\frac{x^3y^2}{\sqrt{z}}\right) =$		
c) $\log\left(\frac{x^3}{\sqrt{z^5y}}\right) = $		
14. Write the follo	wing as one term.	
a) $4log_2x + 2log_3x$	$g_2 y = _$	
b) $\frac{1}{3}logx - 2log$	y + 3logz =	
5		
15. Evaluate the for below.	bllowing for the functions define	ed d) $(fg)(x) =$
f(x) = 3x - 1	1 and $g(x) = x^2 + 2$	e) Domain of (<i>f g</i>) =
(f+g)(x) =		
b) Domain of $(f \cdot$	+ g)	f) $(fg)(0) =$
c) $(f \pm a)(3) =$		
$(1 \ (1 \ g)(3) =$		

c) $h(x) = x^3 + 8x^2 + 30x + 36$	
(Hint: Use rational zero's theorem)	
d) $log_2(2x-1) + log_2(x+1) = 2$	e) $4 + \log(2x - 1) = 5$
	-
f) $3x^2 - 5x + 2 = 3x - 1$	g) $2^{x^2-61x} = 64^{3-9x}$
b) $17^{-x-3} - 16^{-8x}$	$(1) = 500 e^{0.03t} - 2000$
1) 1/2 = 10	1) $500e^{-100} = 2000$
22. Solve the following systems of equations	
32. Solve the following systems of equations.	
(y = 3x - 4)	
a) $\begin{cases} 4x + 3y = 27 \end{cases}$	
Solution: $(x, y) =$	

e) A loan of \$39,000 is made at amount due reach \$63,000 o whole number answer.	5% interest, compounded annually. After how many years will the r more? (Use a calculator if necessary.) Write the smallest possible
 f) The number of bacteria in a certa growth model, with a growth rate sample to double? Note: This is a continuous growth model 	in population increases according to a continuous exponential parameter of 4.1% per hour. How many hours will it take for the del.
Do not round any intermediate comp	utations, and round your answer to the nearest whole hundredth.
g) An initial amount of \$1800 is inve continuously. Find the amount in	ested in an account at an interest rate of 2% per year compounded the account after 6 years. Round your answer to nearest cent.