Exam 1 Review

Name: ___

Due Tuesday, October 3, 2017

- 1. Create a function y = f(x) that satisfies the following criteria.
 - a. Is One-to-one
 - b. Has domain $(-4, -1] \cup [0, 5]$
 - c. f(2) = 9
 - d. For at least one x in the domain of f, f(x) = -2

Questions about your function-

- i) Do you think the function you came up with is unique? Explain why.
- ii) Find the range of your function.
- iii) What is $f^{-1}(x)$?
- 2. Create an exponential function so that f(0) = 200 and then answer the following questions
 - a. What is the inverse of this function?
 - b. Find the domain and range of the function and its inverse?
- 3. Sketch the graphs of the functions below.
 - a. $f(x) = 2^x$
 - b. $g(x) = log_2 x$
 - c. Use the functions in parts a,b to explain the relationship between these two functions.
 - 4. What is the relationship of $f(x) = e^x$ and g(x) = lnx?
- 5. Find the inverse function of $f(x) = \frac{3x-1}{5+x}$. Then find the domain and range of both the function and its inverse.
- 6. The function *f* is defined as follows: $f(x) = \frac{4x+!}{3x-15}$.
 - a. Find f(4). Simplify your answer as much as possible.
 - b. Find $f^{-1}(x)$.
 - c. Domain and Range of f(x) and $f^{-1}(x)$.
- 7. Obtain the piece-wise formula for the functions whose graphs are given below. If the functions below are one-to-one, please also find the formulas for their inverse functions and sketch their graphs.

- 8. A species of bacteria doubles every 30 minutes at room temperature. Write a function to represent the amount of these bacteria A(t) at room temperature after t hours, if you initially started with 30000 bacteria.
- a. Find the number of bacteria after 2 hours.
- b. Find the number of bacteria at 4 hours.

Round your answer to the nearest whole number as necessary.

- 9. Suppose Rahul places \$2000 in an account that pays 5% interest compounded each year. Assume that no withdrawals are made from the account. Do not round your answers.
 - a. Find the amount in the account at the end of 1 year.
 - b. Find the amount in the account at the end of 2 years.
- 10. Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ where $h \neq 0$ for the function below. Explain what this quotient represents. Simplify your answer as much as possible.

$$f(x) = 5x^2 - 6$$

11. Determine if the function below is even, odd or neither.

$$f(x) = 5x^2 + 3$$

- 12. Determine if the graph of the equation $x^2 + y^2 = 4$ below is symmetric with respect to x-axis, yaxis, the origin, or neither.
- 13. State which of the following functions are one-to-one.

14. Rewrite the exponential equations in logarithmic form and logarithmic equations in exponential form. If possible simplify your answers.

Exponential	Logarithmic		
Equation	Equation		
$e^x = 5$			
$2^{x+1} = 8$			
	$log_2(x) = -1$		
	$\log(x+1) = 2$		
	$\ln(x+1) = 3$		
$5^{1-x} = 3$			
	$\log_{\frac{1}{2}}(x) = -3$		

15.

A. Fill in the missing values to make the statement a true statement.

i.
$$log_5 8 - log_5 (___) = log_5 4$$

ii.
$$log_2 3 + log_2 5 = log_2 (___)$$

iii.
$$3log_7 2 = log_7 (__)$$

iv.
$$log_5 49 = (__)log_5 7$$

- v. $\frac{ln5}{ln4} = log_4(___)$
- C. Write the following as one term.

i.
$$4log_2x + 2log_2y =$$

ii.
$$\frac{1}{3}logx - 2logy + 3logz = _$$

Expand the following. Each logarithm in your answer should involve only one variable.
 Assume that all variables are positive.

I.
$$\log(x^{3}y^{2}) =$$

II. $\log_{2}\left(\frac{x^{3}y^{2}}{\sqrt{z}}\right) =$ _____
III. $\log\left(\frac{x^{3}}{\sqrt{z^{5}y}}\right) =$ _____

IV.
$$\ln((4+x)(x-2)) =$$

V.
$$\ln\left(\frac{x^{5\sqrt[3]{y}}}{3z}\right) =$$

D. Compute the values below exactly

i.
$$log_2(8) =$$

ii. log (0.000001) = _____

iii.
$$\ln(e^5) =$$

iv.
$$\ln(\sqrt{e}) =$$

v.
$$log_5\left(\frac{1}{25}\right) =$$

vi. $log_{\frac{1}{3}}(9)$

16. Evaluate the following for the given one-to-one functions below.

17. Obtain the piece-wise formula for the functions whose graphs are given below. If the functions below are one-to-one, please also find the formulas for their inverse functions and sketch their graphs.

19. Find the first 4 terms of the sequences given below.

$a_n = n^{th}$ term of the	First	Second	Third	Fourth	
sequence	term	term	term	term	
$a_n = 5\left(\frac{1}{2}\right)^{2n+1}, n = 0, 1, 2, \dots$					Arithmetic Geometric Neither
$a_n = 4n + 3, n = 4,5, \dots$					Arithmetic Geometric Neither
$a_n = \frac{2n-1}{n+2}, n = 1,2,3, \dots$					Arithmetic Geometric Neither

20. For the sequences below determine if they are arithmetic or geometric. Then find a formula for the a_n and evaluate: $a_5 = -$, and $a_{10} = -$.

Sequence	Туре	$f(n) = a_n = n^{th}$	Evaluate these elements.
		term	
{13,17,21,25,}	□ Arithmetic		$a_5 =$
	Geometric		
	Neither		$a_{10} =$
{7,21,63,189,}	□ Arithmetic		$a_5 =$
	Geometric		
	Neither		$u_{10} =$
{1,-1,1,-1,}	□ Arithmetic		<i>a</i> ₅ =
	Geometric		
	Neither		$a_{10} =$

21. For a given geometric sequence, the 7th term, $a_7 = 15$ and the 9th term, $a_9 = 135$. Find the 15^{th} term a_{15} . (Recall that geometric sequences are exponential functions of (n) and the formula for a_n can be written in the form: $a_n = a_0 \cdot r^n$.)