a. $x^{2}+4 x+y^{2}-6 y-23=0$
$\left(x^{2}+4 x+4\right)+\left(y^{2}-6 y+9\right)=23+4+9$
$(x+2)^{2}+(y-3)^{2}=36$
This is a circle with center at $(-2,3)$ and $r=6$.
b. $25 x^{2}-150 x+4 y^{2}+8 y=-129$
$25\left(x^{2}-6 x\right)+4\left(y^{2}+2 y\right)=-129$
$25\left(x^{2}-6 x+9\right)+4\left(y^{2}+2 y+1\right)=-129+225+4$
$25(x-3)^{2}+4(y+1)^{2}=100$
$\frac{(x-3)^{2}}{4}+\frac{(y+1)^{2}}{25}=1$
This is an ellipse with center at $(3,-1), a=2$, and $b=5$.
Vertices are $(5,-1),(1,-1),(3,4)$, and $(3,-6)$.
$c=\sqrt{\left|a^{2}-b^{2}\right|}=\sqrt{|4-25|}=\sqrt{|-21|}=\sqrt{21}$
Foci are $(3,-1+\sqrt{21})$ and $(3,-1-\sqrt{21})$.
Major axis is a vertical axis with length 10 , and minor axis is a horizontal axis with length 4.
c. $25 x^{2}-150 x-4 y^{2}-8 y=-121$
$25\left(x^{2}-6 x\right)-4\left(y^{2}+2 y\right)=-121$
$25\left(x^{2}-6 x+9\right)-4\left(y^{2}+2 y+1\right)=-121+225-4$
$25(x-3)^{2}-4(y+1)^{2}=100$
$\frac{(x-3)^{2}}{4}-\frac{(y+1)^{2}}{25}=1$
This is a hyperbola that opens left and right with center at $(3,-1), a=2$, and $b=5$.
Vertices are: $(1,-1)$ and $(5,-1)$.
$c=\sqrt{a^{2}+b^{2}}=\sqrt{4+25}=\sqrt{29}$
Foci are $(3-\sqrt{29},-1)$ and $(3+\sqrt{29},-1)$.
Equations of the asymptotes are $y=-\frac{b}{a}(x-h)+k$ and $y=\frac{b}{a}(x-h)+k$. So, $y=-\frac{5}{2}(x-3)-1 \rightarrow y=-\frac{5}{2} x+\frac{13}{2}$ and $y=\frac{5}{2}(x-3)-1 \rightarrow y=\frac{5}{2} x-\frac{17}{2}$
d. $x^{2}-6 x+2 y+11=0$
$x^{2}-6 x=-2 y-11$
$x^{2}-6 x+9=-2 y-11+9$
$x^{2}-6 x+9=-2 y-2$
$(x-3)^{2}=-2(y+1)$
$4 p=-2 \rightarrow p=-\frac{1}{2}$
This is a parabola that opens down with vertex at $(3,-1)$, focus at $\left(3,-\frac{3}{2}\right)$, and line of directrix at $y=-\frac{1}{2}$.

